13636351217
聯(lián)系人:錢經(jīng)理
電 話:13636351217
手 機(jī):13636351217,13636351073
地 址:上海市松江臨港科技城漢橋文化科技園B座
郵 編:201615
傳 真:021-64881400
郵 箱:2881726255@qq.com
阿儀網(wǎng)商鋪:http://www.app17.com/c60514/
手機(jī)網(wǎng)站:m.shhyswkj.com
閱讀次數(shù):1980 發(fā)布時(shí)間:2012/10/22 9:26:55
僅在一定條件下酶反應(yīng)速度v才和酶量成正比例。一定條件是什么?這些條件之間有無主次關(guān)系?如何選擇合適的測定條件?這些都是實(shí)驗(yàn)室工作者在設(shè)計(jì)或選擇測酶活性濃度方法時(shí)必須面對的問題。
首先可從理論上探討在什么特定情況下的反應(yīng)速度才可能與酶量成正比例。酶的整個(gè)反應(yīng)過程可簡化如下:
式中Kp可看成為ES的解離常數(shù).Michaclis和Menten通過推導(dǎo)可得出下式方程式
此式中V為反應(yīng)速度,對一定濃度的酶而言為一常數(shù)。Km為實(shí)驗(yàn)室工作所熟系的米氏常數(shù)。上式也可改寫為:
Kp和Km雖為常數(shù),但[S]為變量,因此在一般情況下不可能為常數(shù),即v≠k[E],從理論上很清楚說明反應(yīng)速度v和酶量E之間在絕大多數(shù)條件下只存正比,即v∝[E]。而非正比例關(guān)系。但在底物[S]濃度很大,遠(yuǎn)遠(yuǎn)超過Km的特殊條件下Km值由于相對很小可忽略不計(jì)。此式可變?yōu)椋?/p>
由于底物[S]濃度很大,使酶飽和。ES已達(dá)極限,反應(yīng)速度不再增加,故此時(shí)反應(yīng)速度為反應(yīng)V。即從理論上說只有測定的是酶反應(yīng)V。此時(shí)反應(yīng)速度才和酶量E成正比例。也只有在此基礎(chǔ)上建立起來的測定方法才是可靠的、準(zhǔn)確的。
Kp是酶學(xué)中很重要的一個(gè)常數(shù),即周轉(zhuǎn)數(shù)(Turnover number),從上式可得出。
其含義為每分鐘每分子酶轉(zhuǎn)換底物分子數(shù)。酶的Kp數(shù)值約在50-105min-1之間。碳酸酐酶是目前已知酶變率的酶(36×10-6min-1)。Kp的倒數(shù)代表每一酶催化循環(huán)的時(shí)間,以碳酸酐酶為例
1/Kp=lmin/136×106=0.028×10-6min=1.7μs
即每隔1.7μs,一分子酶就和一個(gè)底物結(jié)合,反應(yīng)一次。
臨床化學(xué)聯(lián)合會(huì)(IFCC)和不少國家包括我國的一些學(xué)會(huì)建立了或正在建立測定酶活性濃度的推薦或參考方法。都毫無例外地提出測酶活性濃度方法所選擇的測定條件應(yīng)是酶反應(yīng)的“*適條件”以保證酶具有的催化活性。實(shí)質(zhì)上就是基于以上理論考慮,要測定酶的反應(yīng)速度V。
我國檢驗(yàn)學(xué)會(huì)文件中對*適條件是這樣提出:①選合適的底物、輔因子、活化劑、變構(gòu)劑的種類和濃度。②指示酶和輔助酶的種類和濃度。③反應(yīng)混合液的*適pH,緩沖液種類和濃度。④其它影響酶活性的因素,如去除各種抑制劑。并提出:在某些情況下,為了獲得更好的測定重復(fù)性或更大的臨床價(jià)值,可考慮對上述“*適條件”作適度的修改。
一、底物、輔因子、活化劑、變構(gòu)劑的種類和濃度
這一項(xiàng)包括幾種因子,其中*重要的是底物種類和濃度,這是每種測酶活性濃度方法中首先需要選擇的項(xiàng)目,選擇恰當(dāng)與否,對該酶測定至關(guān)重要。后面幾項(xiàng)則不是每種酶測定都會(huì)遇到的選擇。
。ㄒ唬┻x合適的底物種類和濃度
如所測的酶專一性不強(qiáng),可作用于多種底物,首先就需決定選擇哪一類底物作為測此酶的底物。如該項(xiàng)酶測定主要用于臨床診療工作,則首先應(yīng)考慮選有較高診斷價(jià)值的底物。例如臨床上測定酸性磷酸酶主要用于診斷前列腺癌,所選的底物應(yīng)對前列腺酸性磷酸酶有較高的特異性。不易被其它組織如紅細(xì)胞、血小板中酸性磷酸酶所作用,在常用的底物中以麝香草酚磷酸鹽*符合上述選擇條件。但如進(jìn)行酶基礎(chǔ)研究,探討其在體內(nèi)作用時(shí),則選擇酶在體內(nèi)的生理底物更為合適,一般而言在多種底物中,Km*小的底物往往是此酶的生理底物。
選擇Km小的底物測定酶還有一個(gè)優(yōu)點(diǎn),就是在反應(yīng)速度V的底物濃度也將。在實(shí)際工作中可能意味著試劑成本可能較低,不易出現(xiàn)底物難溶解的困難。
底物專一性強(qiáng)的酶雖然不面臨上述選擇,但只要所測酶催化的是可逆反應(yīng),則和專一性不強(qiáng)酶一樣,都面臨著是選擇正向還是逆向反應(yīng)來測定酶,不同反應(yīng)方向的底物必然是不一樣的。這方面的選擇更多從技術(shù)和實(shí)用方面加以考慮往往選擇速度較快的方向,因?yàn)檫@可以提高測定的靈敏度,如測定肌酸激酶(CK),由于磷酸肌酸價(jià)格昂貴且不穩(wěn)定,早期多選用正向反應(yīng),底物為肌酸和ATP速度太慢,只是逆向反應(yīng)的1/6,測定靈敏度太低,以致正常標(biāo)本結(jié)果誤差很大。近年來都改用逆向反應(yīng)測定CK,明顯提高CK測定的精密度和準(zhǔn)確度。在此問題上,實(shí)用考慮也起了不小作用。例如測定乳酸脫氫酶(LD)時(shí),如考慮到正向反應(yīng)明顯快于逆向反應(yīng),則應(yīng)考慮以丙酮酸和NADH為底物,這正是IFCC和其它一些學(xué)會(huì)推薦的方法。但目前市售的測LD的試劑盒不少都以乳酸和NAD+為底物。因?yàn)镹AD+價(jià)格明顯低于NADH,并且穩(wěn)定可長期儲(chǔ)存?蒲泄ぷ髦腥缧铚yLD,還是采用IFCC的方法。
確定底物種類后,重要的問題是選擇底物的合適濃度,在討論此問題之前,有必要先簡單復(fù)習(xí)一下底物濃度和酶反應(yīng)速度之間的關(guān)系,因其不同于其它化學(xué)反應(yīng)有其獨(dú)特之處,圖17-2很形象表示出這種差異。
反應(yīng)物濃度[S]
圖17-2a 反應(yīng)物濃度對化學(xué)反應(yīng)的影響
底物濃度[S]
圖17-2b 底物濃度對酶反應(yīng)的影響
圖a表示在一般化學(xué)反應(yīng)中遵循質(zhì)量作用定律,反應(yīng)速度隨反應(yīng)物質(zhì)濃度增加成正比例增加,圖b則表示酶反應(yīng)中底物濃度對反應(yīng)速度的影響,當(dāng)?shù)孜餄舛群艿蜁r(shí),酶反應(yīng)速度幾乎隨底物增加成正比例加快,進(jìn)一步升高底物濃度,雖然反應(yīng)速度也加快,但增加速度愈來愈慢,不成比例。到一定程度,反應(yīng)速度趨于恒定為一常數(shù),實(shí)際上就是趨向反應(yīng)速度V,測定此處的反應(yīng)速度V,*能準(zhǔn)確地反映酶量多少。在此處底物濃度變化,對反應(yīng)速度影響很小。
Michaclis和Menten二式首先在本世紀(jì)初對酶反應(yīng)的此項(xiàng)獨(dú)特現(xiàn)象從理論上加以合理解釋。并推導(dǎo)出著名的米-門方程式:
此公式對選擇酶測定的底物濃度有重要的指導(dǎo)作用。Km對每一種酶而言在一定條件下為一常數(shù),并可從上述方程式求出,在反應(yīng)速度為反應(yīng)速度V一半時(shí),代入上式得:
Vkm+V[S]=2V[S]
VKm=V[S]
[S]=Km
換言之,當(dāng)酶促反應(yīng)速度為反應(yīng)速度一半時(shí),此時(shí)的底物就相當(dāng)于酶的米氏常數(shù)Km。以mol/L表示之,大多數(shù)酶Km在10-3至10-5mol/L之間。
當(dāng)我們知道或計(jì)算出某一酶的Km后就可以計(jì)算出不同底物濃度和Km間的比值,化入米-門方程式就可計(jì)算出此時(shí)酶促反應(yīng)速度相當(dāng)于反應(yīng)速度的百分比,見表:17-3
表17-3 底物濃度與Km比值相當(dāng)?shù)姆磻?yīng)百分比
[S]/Km | V/V×100 |
100.0 | 99.0 |
10.0 | 91.0 |
1.0 | 50.0 |
0.1 | 9.0 |
0.01 | 0.99 |
依據(jù)上表一般都認(rèn)為酶測定時(shí)底物濃度為Km的20倍乃至100倍。在實(shí)際工作考慮到底物溶解度的限制,價(jià)格的昂貴,可將底物濃度降為Km的10倍。再低就不適合酶的測定,可能產(chǎn)生較大誤差。
以上規(guī)律適用于大多數(shù)酶。一些酶還有其特殊情況,常能遇到的是當(dāng)?shù)孜餄舛仍黾拥揭欢ǚ秶,酶反?yīng)速度不僅不增加,反而下降。如乳酸脫氫酶,當(dāng)丙酮酸濃度超過一定量時(shí),酶活性反而下降,故丙酮酸濃度不能過高。
以上介紹的米-門方程式只適用于單一底物的酶,不少酶催化反應(yīng)二底物乃至更多底物,有關(guān)二底物的米-門方程以及此時(shí)底物濃度的選擇可參考一些有關(guān)書籍。實(shí)際工作中*簡單的作法是先將其中底物的濃度選得很高,使酶飽和,然后求出另一底物的表觀Km,反之亦然,*后按上述規(guī)律決定二底物的合適濃度。
。ǘ┹o因子、活化劑的種類和濃度
從廣義上說,凡能促進(jìn)酶及反應(yīng)物進(jìn)入活化狀態(tài)從而加速酶催化反應(yīng)的物質(zhì)都能稱為輔因子,它包括種類很廣的物質(zhì)。英漢生化詞典將輔因子(cofactors)定義為“一種酶的活性所需要的一種非蛋白質(zhì)成分”。這種輔因子可能是一種金屬離子激活劑或一種有機(jī)分子(輔酶)。它們或松或緊地與酶相結(jié)合;緊密接合的輔因子稱為“輔基”。將激活劑(activator)定義為“一種金屬離子,作為一種酶的輔助因子。”
在前面已談到,測酶活性濃度時(shí)應(yīng)該在*適條件下測酶反應(yīng)的速度。如測定酶需要輔因子,活化劑時(shí),應(yīng)選擇合適的種類和濃度加入到測定酶的體系中,在些過程中可能會(huì)涉及到下列四類物質(zhì)。
首先是輔酶(Coenzyme)。很多酶反應(yīng)都必須有輔酶參加。如相當(dāng)部分的還原酶需要輔酶Ⅰ(NAD+)和輔酶Ⅱ(NADD+)參加。ATP是激酶(Kinase)反應(yīng)中不可少的輔酶,這類物質(zhì)一般是小的有機(jī)化合物,和輔基不同點(diǎn)是與酶蛋白結(jié)合很松弛,用透析和其它方法很易將它們與酶分開,盡管它們不用于酶的底物,特異性不強(qiáng),往往參加一系列酶反應(yīng)和代謝過程。但在作用方式上和底物類似,在酶反應(yīng)過程中與酶結(jié)合、分離及反復(fù)循環(huán)。在方法學(xué)上,可將它們按底物處理,即可按米-門方程式求出其Km,按底物規(guī)律選擇其濃度。
第二是輔基,輔基雖也是小的有機(jī)化合物,但卻是酶蛋白不可分割部分,不含輔基的酶蛋白稱為脫輔基酶蛋白(apoenzyme),沒有催化活性,必須加入足量輔基,和它結(jié)合成為全酶(holoenzyme),才可能有催化活性。*典型的例子是各種轉(zhuǎn)氨酶需要磷酸吡哆醛為其輔基,在反應(yīng)過程中。氨基酸將其氨基交給吡哆醛變?yōu)檫炼甙,本身接受醛基成為酮酸,然后吡哆胺將氨基轉(zhuǎn)交給酮酸生成氨基酸,本身又變回吡哆醛。從此機(jī)制不難理解為何脫輔基酶蛋白無催化活性。
輔基和輔酶不同點(diǎn)不僅表現(xiàn)在和酶蛋白結(jié)合緊密,不易為透析所除去,和酶作用方式也不同,不似輔酶迅速與酶結(jié)合,又迅速分解為酶和產(chǎn)物,輔基顯著特點(diǎn)是與酶結(jié)合需要一定時(shí)間,因此在酶測定時(shí),如按底物一樣來處理輔基,在酶反應(yīng)開始時(shí)才加入輔基,則開始階段反應(yīng)較慢,經(jīng)過一段延滯期后,反應(yīng)才達(dá)到應(yīng)有速度。因此在酶測定時(shí),往往是先加入足量輔基,作用一定時(shí)間如10分鐘后,再加入底物開始酶反應(yīng)。
很多輔酶和輔基來自維生素或結(jié)構(gòu)中含有維生素,如NAD和NADP來自維生素尼克酸,轉(zhuǎn)氨酶的輔基磷酸吡哆醛來自維生素B6(吡哆醇)。來自維生素B1的焦磷酸硫胺素是丙酮酸脫羧反應(yīng)的輔羧化酶。從維生素B2(核黃素)形成的FAD,F(xiàn)MN是很多呼吸鏈上酶的輔基,維生素H(生物素)在羧化和脫羧作用中起輔基作用,葉酸衍生物參與一碳基團(tuán)的轉(zhuǎn)移。維生素B12的衍生物鈷胺酰胺參與酶催化的異構(gòu)反應(yīng)。
第三類物質(zhì)是離子,很多酶需要特定離子幫助才能使其反應(yīng)達(dá)到速度。*常見的是二價(jià)金屬離子如Mg2+、Zn2+、Mn2+、Ca2+、Fe2+等。所有轉(zhuǎn)移磷酸的酶,如激酶類和堿性磷酸酶的反應(yīng)都需要Mg2+的參加。所以如在反應(yīng)體系中加入金屬螯合劑如ED-TA或以他們?yōu)榭鼓齽┏R种埔恍┟傅幕钚。因此酶測定的標(biāo)本多采用血清而不采用血漿,以外還有單價(jià)的K+。如丙酮酸激酶反應(yīng)同時(shí)需要K+和Mg2+。淀粉酶催化的反應(yīng)需要陰離子Cl-,5mmol/L氯離子可加速淀粉酶的反應(yīng)三倍。
離子加速酶反應(yīng)的機(jī)制是多種多樣,Zn2+是堿性磷酸酶和羧基肽酶A整體結(jié)構(gòu)的一部分,可穩(wěn)定酶的三級(jí)和四級(jí)結(jié)構(gòu)。Cl-加速淀粉酶反應(yīng)的機(jī)制可能與它能與酶分子中某些帶陽電荷基團(tuán)結(jié)合有關(guān),改變了在催化作用中起重要作用的基團(tuán)的電離常數(shù),有些離子可使酶分子帶陽電荷,和帶陰性電荷的底物結(jié)合,在酶反應(yīng)中起了橋梁作用。必須注意的是,過量的離子往往抑制酶反應(yīng)速度,在測定酶時(shí)要選擇合適的濃度。
第四類是一些無法包括在前三類的其它加速酶反應(yīng)物質(zhì),如巰基化合物可穩(wěn)定酶的雙硫鍵。在肌酸激酶反應(yīng)體系中加入它將明顯增高酶活性,并且隨所加巰基化合物的不同,增加的速度也有差異,所以在測肌酸激酶時(shí)要選擇好巰基化合物的種類與合適的濃度。
還有所謂的表觀激活作用,該物質(zhì)并不是真正加快反應(yīng)速度,而是由于和抑制劑作用抵消了抑制作用,從表面上看似乎是加速了酶的反應(yīng)作用。
(三)選變構(gòu)劑的種類與濃度
有一類特殊的酶叫變構(gòu)酶(allosteric enzyme),其反應(yīng)速度和底物關(guān)系不同于一般酶的雙曲線,而出現(xiàn)S形曲線,這是由于這種酶具有二個(gè)或更多個(gè)獨(dú)特的部位-或是相互作用的催化部位,或是相互作用的催化部位與調(diào)節(jié)部位,其結(jié)果是酶與底物作用速度將受另一類物質(zhì)的影響,這類物質(zhì)命名為變構(gòu)劑或效應(yīng)物。根據(jù)作用不同又分為變構(gòu)激活劑和變構(gòu)抑制劑或者正負(fù)效應(yīng)物,而不同濃度的變構(gòu)劑會(huì)明顯改變曲線形狀。變構(gòu)酶在物質(zhì)代謝中有重要的調(diào)節(jié)作用。在測定變構(gòu)酶活性濃度時(shí),必須選擇好變構(gòu)劑種類和濃度。一般來說應(yīng)選擇在飽和濃度的變構(gòu)劑的條件下測定構(gòu)酶的活性濃度。
二、指示酶與輔助酶的種類和濃度
采用酶偶聯(lián)法測定酶活性濃度時(shí),反應(yīng)體系必須加入指示酶,有些方法還加用輔助酶,在選擇或設(shè)計(jì)此類方法時(shí),必須考慮合適的酶和濃度,有關(guān)問題將在后面“連續(xù)監(jiān)測法酶活性濃度”一節(jié)中詳加討論。
三、反應(yīng)體系的*適pH、緩沖液的種類和濃度
固定酶反應(yīng)的其它條件,在不同pH處測定酶反應(yīng)速度,可得各種類型的酶活性與pH關(guān)系見圖17-3A。
圖17-3A 酶活性與pH的函數(shù)關(guān)系曲線可能具有的幾種形狀
*常見的是(a)的對稱鐘形曲線,少數(shù)的如(b)(c)在一側(cè)即偏酸或偏堿處活性。生化學(xué)家將酶活性處的pH稱為*適pH。一般來說,血清中大多數(shù)酶*適pH接近中性(pH6.5-7.5)。有些酶在*適pH處活性變化尖銳明顯,也有些平坦寬廣。測定酶活性濃度時(shí)一定要選擇在*適pH處,不僅因?yàn)榇颂幟阜磻?yīng)速度,測定靈敏度,還因?yàn)榇颂幟富钚宰兓男甭?小,如反應(yīng)體系中出現(xiàn)pH變化時(shí),對測定結(jié)果影響*小。
圖17-3B pH對酶活性及穩(wěn)定性的作用
曲線A:V對pH作圖曲線B:酶先在pH5及pH8預(yù)孵育后,在pH6.8測活性
氫離子可以通過多種途徑影響酶催化反應(yīng)。如在脫氫酶反應(yīng)中往往需要?dú)潆x子參加,也可能產(chǎn)生氫離子,從理論上可以將氫離子看成是該反應(yīng)的底物和產(chǎn)物。此外,當(dāng)pH變化時(shí),可影響到底物、酶、酶-底物復(fù)合物的解離狀態(tài)和構(gòu)型,甚至還可能影響到各種輔因子,從而影響酶活性。
PH對酶還有一個(gè)重要的作用,就是影響酶的穩(wěn)定性。圖17-3B介紹一個(gè)有關(guān)實(shí)驗(yàn)。
圖中曲線A是*適pH實(shí)驗(yàn)的結(jié)果,出現(xiàn)典型的鐘形曲線,其*適pH為6.8,高于或低于6.8時(shí),酶反應(yīng)速度下降,下降原因可能與上述諸因素有關(guān),但也可能由于酶穩(wěn)定性下降失活所致,或者是二類原因之總和。通過曲線B的實(shí)驗(yàn),可將上述二類原因分清。此時(shí)先將酶與不同pH底物緩沖液溫育一段時(shí)間,此時(shí)間一般與測定時(shí)間相當(dāng),然后再將pH調(diào)回*適pH處測其活性。從曲線B可以說在pH5-6.8以及pH6.8-8.0之間酶活性的下降與酶滅活關(guān)系不大,酶在*適pH處儲(chǔ)存常數(shù)穩(wěn)定。但有些酶貯存在*適pH時(shí),并不一定比在其它pH處更穩(wěn)定。
*適pH并非是酶的特征性常數(shù),易受多種因素影響而改變,如緩沖液的種類、底物濃度、溫度等,在研究pH對酶穩(wěn)定性影響還應(yīng)注意到酶濃度高低,在低濃度時(shí),酶易解離為單體,常比多聚體更易滅活。還應(yīng)注意試劑中各種防腐劑和其它添加劑的影響。
*后必須強(qiáng)調(diào)的是本節(jié)討論的pH并不是指底物緩沖液的pH,而是底物和標(biāo)本混合后的pH對反應(yīng)速度的影響,由于實(shí)驗(yàn)室所測的標(biāo)本很少是純酶樣品,多為體液或組織粗提液。它們也是有一定pH值和緩沖能力的緩沖液,和底物緩沖液混后后,不一定維持住原來pH,特別是當(dāng)二溶液的pH相差甚遠(yuǎn)時(shí),變化更大。例如堿性磷酸酶*適pH為10.2,雖然底物pH也是10.2,但血清標(biāo)本pH為中性,混合液的pH必然低于10.2,降低程度取決于血清的pH和緩沖能力。從而影響酶測定結(jié)果,臨床觀察證實(shí):當(dāng)血清標(biāo)本放置過夜后用金氏法再測堿性磷酸酶時(shí),結(jié)果常升高。有人認(rèn)為這與血清放置過長,由于CO2逸出引起血清pH偏堿有關(guān)。
在下列情況極易引起混合液pH偏離底物緩沖液的pH:一是標(biāo)本用量太大,如以前有些方法,為節(jié)省底物,底物緩沖液用量和血清用量相等,此時(shí)混合液pH可能在此二液pH之間,有可能引起較大測定誤差。所以在文件中規(guī)定“標(biāo)本在總體積中的比例應(yīng)在10%以下”。就是要盡量減少標(biāo)本中各種物質(zhì)對測定結(jié)果的影響。二是底物緩沖液緩沖能力太低。如金氏法測堿性磷酸酶時(shí)使用的碳酸鹽緩沖液的濃度為0.01mol/L,濃度這樣低的緩沖液,必定要受標(biāo)本pH的影響。
過去長期以來,認(rèn)為緩沖液作用就是維持酶反應(yīng)的*適pH,忽視了緩沖物質(zhì)對酶反應(yīng)的其它作用和影響,Howell等研究了酶活性在三種不同緩沖液的變化情況見圖17-4。
圖17-4 各種緩沖液的溫度及pH的關(guān)系
TRIS:三羥甲基氨基甲烷0.1mol/L
TRA:三乙醇胺0.1mol/L
三種不同緩沖液不僅*適pH不一樣,反應(yīng)速度也有差異,從測定酶活性濃度角度,應(yīng)該選用枸櫞酸緩沖液,類似現(xiàn)象在大多數(shù)酶都能觀察到,僅是程度不同,其中以堿性磷酸酶活性受到緩沖液種類影響*為顯著,在二乙醇胺緩沖液所測酶活性約比在碳酸鹽緩沖液所測的高2倍。
由于緩沖液含有大量離子,或影響酶蛋白的構(gòu)型,或影響底物的解離程度等等,從而影響酶活性。Allert曾擬定了一種作用模式,并進(jìn)行數(shù)學(xué)計(jì)算,得出相應(yīng)方程式來說明反應(yīng)體系中電解質(zhì)會(huì)影響反應(yīng)速度V,且不同濃度電解質(zhì)的影響有差異。因此在方法設(shè)計(jì)時(shí),選完緩沖物質(zhì)后,還必須了解不同濃度緩沖液對酶活性的影響。一般而言,隨緩沖液濃度增加,電解質(zhì)干擾酶和底物結(jié)合,酶活性將逐步下降,所以選擇緩沖液濃度時(shí),常需在濃度較高以保持足夠緩沖能力和濃度較低以免抑制酶活性兩個(gè)相矛盾作用之間取得平衡。
在目前酶測定常用的一大類所謂生物緩沖物質(zhì),如圖中的Tris、三乙醇胺受溫度影響較大。因此在我國學(xué)會(huì)文件中指出“配制緩沖液時(shí)不僅要指出其pH值,還應(yīng)說明配制溫度,以避免因溫度不同而引起的誤差。”在此圖中還可看到,即使是同一種緩沖液,隨其它物質(zhì)存在,也有可能改變溫度的影響。因此在實(shí)際配制緩沖液時(shí),應(yīng)首先將配制溶液溫度調(diào)節(jié)到規(guī)定溫度,然后在pH計(jì)監(jiān)測下加入相應(yīng)的酸或堿將溶液pH調(diào)到要求范圍。不控制溫度,不用pH計(jì)盲目按一些書提供的量配制緩沖液是不可取的。
四、其它影響酶活性因素
除了上述主要因素外,一些其它因素也會(huì)影響酶活性,如反應(yīng)體系中含有氧化劑,可氧化酶蛋白中甲硫氨酸、色氨酸和酪氨酸殘基,使酶失活,試劑盒中常用的一些表面活性劑如Tween-80、Brig-35等會(huì)抑制一些酶的活性。
其它因素中,對酶測定而言,*重要的是抑制劑的作用,抑制作用是酶學(xué)中的一個(gè)重要研究內(nèi)容。但如只涉及到設(shè)計(jì)和選擇測定酶的方法,則比較簡單,既然要測定的是“*適條件”下的反應(yīng)速度,那么不論是可逆或不可逆抑制劑,也不論是競爭性、非競爭性、反競爭性抑制劑都應(yīng)在反應(yīng)體系中設(shè)法除去。此問題在測定尿液中尤為突出。尿中排出大量代謝產(chǎn)物,不少物質(zhì)會(huì)影響酶,如脲可使酶解聚、磷酸鹽抑制磷酸酶活性。在病理情況下尤其使用各種藥物后,使情況更為復(fù)雜,此時(shí)尿中可出現(xiàn)不少正常情況下不出現(xiàn)物質(zhì),即可能抑制酶活性,也可能激活酶活性。為使脲酶測定結(jié)果有一定可比性,在測定脲酶前,通過透析、凝膠層析或超濾將小分子化合物與酶分開,這樣較為可靠。
五、溫度的控制
要了解此問題,應(yīng)注意溫度對酶活性影響的雙重性。首先,化學(xué)速度隨溫度升高而加快,酶反應(yīng)也不例外。Q10值即溫度增加10℃,化學(xué)速度的變化率。酶的Q10值約在1.5-2.5之間。
溫度與反應(yīng)速度之間關(guān)系,可用Arrhenius方程式來表示:
Logk=-E/2.303RT+常數(shù)
式中k是反應(yīng)常數(shù),T為絕對溫度,R為氣體常數(shù)。E為活化能也是常數(shù)。在酶反應(yīng)中V=K·[E]。所以在酶反應(yīng)中,LogV和1/T作圖為一直線,斜率為-E/2.303R。通過每一直線斜率不難計(jì)算出該酶反應(yīng)的活化能E。
但是,測定酶時(shí)都需要酶和底物在一定溫度下作用一段時(shí)間,在此期間,溫度有可能使酶失活,不同酶在此方面差異很大,有些酶如胎盤堿性磷酸酶在56℃放置15分鐘,活性也不下降,有些酶如酸性磷酸酶,37℃1小時(shí)后,失去50%酶活性。酶的穩(wěn)定性還與其它因素,如作用時(shí)間、pH、有無底物、有無其它蛋白等有關(guān)。同為堿性磷酸酶,在肝提取液中遠(yuǎn)不如血清中穩(wěn)定,37℃作用15分鐘后肝中此酶活性將顯著下降。又如將血清pH降低在pH6.0以下,血清中酸性磷酸酶將長期穩(wěn)定。
圖17-5 預(yù)溫15分(37℃,pH9.9)對ALP活性的影響
○與●表示肝ALP活性不預(yù)溫和預(yù)溫的變化
△與▲表示血清ALP活性不預(yù)溫和預(yù)溫的變化
圖17-5形象說明預(yù)溫過程對酶活性的影響。
目前常規(guī)工作實(shí)驗(yàn)室越來越多的使用37℃,一些國家已明確推薦使用此溫度。這更多地是從實(shí)際工作方便來考慮。因?yàn)闇囟壬,反?yīng)速度快,靈敏度高。同時(shí)延滯時(shí)間和測定時(shí)間都可能縮短。從而有利于提高工作效率。尤其目前在常規(guī)實(shí)驗(yàn)室中廣泛使用全自動(dòng)生化分析儀,有高效率的恒溫系統(tǒng),使反應(yīng)系統(tǒng)很快升溫并維持在37℃,可避免溫度差異引起的誤差。但在37℃時(shí),不可避免地一些酶可能失活。
早期曾推薦使用25℃為酶測定溫度,其優(yōu)點(diǎn)為接近室溫,反應(yīng)體系溫度很容易平衡到此溫度,這對于當(dāng)時(shí)使用無有效控溫系統(tǒng)的分光光度計(jì)來測酶活化性有其特別方便之處。但溫度低。反應(yīng)太慢。在有些溫?zé)岬貐^(qū),當(dāng)室溫超過25℃時(shí),還需使用降溫系統(tǒng)很不方便。因此目前已很少有實(shí)驗(yàn)室采用此溫度。
IFCC推薦的30℃,兼顧了上述二溫度的優(yōu)點(diǎn),即保證了一定的反應(yīng)速度。又無酶失活之?dāng)_,此外還有一個(gè)上述二溫度沒有的優(yōu)點(diǎn),即可以鎵作為此溫度的基準(zhǔn)物質(zhì),純鎵的熔點(diǎn)為29.77℃。保證了測定系統(tǒng)計(jì)30℃的高度準(zhǔn)確性,而37℃和25℃至今尚無一個(gè)*準(zhǔn)確的確定方法。
30℃和37℃是目前使用*廣泛的二種測定酶的使用的溫度。在比較不同實(shí)驗(yàn)室測定結(jié)果時(shí),一定要注意由此引起來的差異,否則將導(dǎo)致臨床診斷的困難和誤差。一些作者提出使用二溫度間的轉(zhuǎn)換系數(shù)使二溫度測定結(jié)果的比較變?yōu)榭杀。雖然一些作者持懷疑態(tài)度,用一個(gè)系數(shù)能代表所有標(biāo)本中的變化情況嗎?*新研究證實(shí)只要所用方法合適,人類血清中酶對溫度變化的反應(yīng)差異不大,在無法統(tǒng)一溫度情況下,這還不失為一權(quán)宜之計(jì),常用酶的溫度轉(zhuǎn)換系數(shù)可參見表17-4:
表17-4 常見酶溫度轉(zhuǎn)化系數(shù)
25℃ | 30℃ | 37℃ | |
CK | 0.64 | 1.00 | 1.56 |
LD | 0.75 | 1.00 | 1.44 |
ALT | 0.76 | 1.00 | 1.38 |
AST | 0.73 | 1.00 | 1.52 |
ALP | 0.78 | 1.00 | 1.30 |
GGT | 0.73 | 1.00 | 1.31 |
CHE | 0.81 | 1.00 | 1.26 |
HBDH | 0.85 | 1.00 | 1.10 |
不論選用何種溫度測酶,由于酶反應(yīng)受溫度影響很大,在測定時(shí)間內(nèi),反應(yīng)體系的溫度變化應(yīng)控制在±0.1℃內(nèi)。應(yīng)用國產(chǎn)普通恒溫水浴箱來測酶活性是不合適的,應(yīng)使用帶有攪拌器的高級(jí)恒溫水浴。
首 頁| 公司介紹| 產(chǎn)品展示| 公司新聞| 技術(shù)文章| 聯(lián)系我們| 客戶留言
阿儀網(wǎng) 設(shè)計(jì)制作,未經(jīng)允許翻錄必究. 聯(lián)系人:錢經(jīng)理 聯(lián)系電話:13636351217 ICP備案號(hào):滬ICP備11004148號(hào)-11 總訪問量:9085228 管理登錄
主營產(chǎn)品:ELISA試劑盒、人ELISA試劑盒、大鼠ELISA試劑盒、小鼠ELISA試劑盒、生物試劑、抗體、血清、進(jìn)口標(biāo)準(zhǔn)品、微生物培養(yǎng)基
掃一掃,關(guān)注我們!